Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.
نویسندگان
چکیده
Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.
منابع مشابه
Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination
The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induc...
متن کاملUp-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress
The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 ...
متن کاملUse of Physiological Parameters for Screening Drought Tolerant Barley Genotypes
With the aim of understanding and identifying the traits which can be used as the suitable criteria for quick screening of the water deficit tolerant barley genotypes, an experiment based on randomized complete blocks design with three replications was conducted during two years to evaluate the biochemical responses of 20 barley genotypes to full irrigation and terminal water stress in the fie...
متن کاملEffect of silicon application on wheat seedlings growth under water-deficit stress induced by polyethylene glycol
Silicon is known to ameliorate the deleterious effects of drought on plant growth. We evaluated growth of wheat (Triticum aestivum L. CV. Chamran) under Water-Deficit Stress Induced by Polyethylene Glycol as affected by Si application. In this article, the effects of Si (as potassium silicate) on some parameters related to growth, chlorophyll concentration relative water content (RWC), electrol...
متن کاملTransgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress.
Legume root nodule nitrogen-fixing activity is severely affected by osmotic stress. Proline accumulation has been shown to induce tolerance to salt stress, and transgenic plants over-expressing Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), which accumulates high levels of proline, display enhanced osmotolerance. Here, we transformed the model legume Medicago truncatula with the P5CS gene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 65 8 شماره
صفحات -
تاریخ انتشار 2014